Detailed marking instructions for each question.

Q	Question		Generic scheme	Illustrative scheme	Max mark
1.			Ans: 10		2
			• 1 substitute into $x^2 + 3x$	$\bullet^1 (-5)^2 + 3 \times (-5)$	
			• evaluate $x^2 + 3x$	• ² 10	

Notes:

- 1. Correct answer without working award 0/2
- 2. Accept $-5^2 + 3 \times -5$ for \bullet^1
- 3. For subsequent incorrect working, •² is not available

Commonly Observed Responses:

1. (a) For
$$-5 = (-5)^2 + 3 \times (-5) \rightarrow -5 = 10$$

award 2/2

(b) For
$$-5 = (-5)^2 + 3 \times (-5) \rightarrow -5 = 10 \rightarrow x = 15$$

award 1/2 √×

2. For
$$5^2 + 3 \times 5 = 40$$

award 0/2

3. For
$$5^2 + 3 \times (-5) = 10$$

award 0/2

2.	Ans: 16		2
	• ¹ find quartiles	•¹ 218, 250	
	• ² calculate semi-interquartile range	•² 16	

Notes:

1. Correct answer without working

award 0/2

2. Accept quartiles indicated in the list or on a diagram for •1

Commonly Observed Responses:

1. For
$$\frac{267-198}{2} = 34.5$$

award 0/2

Question		า	Generic scheme	Illustrative scheme	Max mark
3.			Ans: $\frac{22}{9}$		2
			• 1 start simplification and know how to divide fractions	$\bullet^1 \frac{11}{6} \times \frac{4}{3}$	
			•² consistent answer	$e^2 \frac{22}{9}$ or $2\frac{4}{9}$	

1. Correct answer without working

award 0/2

2. Do not penalise incorrect conversion of $\frac{22}{9}$ to a mixed number

1.
$$\frac{11}{6} \times \frac{4}{3} = \frac{44}{18}$$

2.
$$\frac{11}{6} \times \frac{3}{4} = \frac{11}{8}$$

3.
$$\frac{6}{11} \times \frac{3}{4} = \frac{9}{22}$$

Qı	Question		Generic scheme	Illustrative scheme	Max mark
4.			Ans: $2x^3 - 5x^2 - 10x + 3$		3
			•¹ start to expand	• 1 evidence of any 3 correct terms eg $2x^3 - 8x^2 + 2x$	
			•² complete expansion		
			• 3 collect like terms which must include a term in x^3 and a negative coefficient	$\bullet^3 2x^3 - 5x^2 - 10x + 3$	

1. Correct answer with no working

award 3/3

2. For subsequent incorrect working, the final mark is not available

Commonly Observed Responses:

1. For eg
$$2x^3 - 8x^2 + 2x + 3x^2 + 12x + 3 = 2x^3 - 5x^2 + 14x + 3$$

award 2/3 ✓×✓

2. For eg
$$2x^3 + 2x - 12x + 3 = 2x^3 - 10x + 3$$

award 2/3 ✓×✓

3. For
$$2x^3 + 8x^2 + 2x + 3x^2 + 12x + 3 = 2x^3 + 11x^2 + 14x + 3$$

award 1/3 √××

Qı	uesti	on	Generic scheme	Illustrative scheme	Max mark
5.			Ans: $B(0,6,6), C(3,3,9)$		2
			•¹ Coordinate B	•¹ (0,6,6)	
			•² Coordinate C	\bullet^2 (3,3,9)	

- 1. The maximum mark available is 1/2 where
 - (a) brackets are omitted
 - (b) answers are given in component form
- 2. For (6,6,0) and (9,3,3) [repeated error]

award 1/2 ×√

Commonly Observed Responses:

2. For
$$\begin{pmatrix} 0 \\ 6 \\ 6 \end{pmatrix}$$
 and $\begin{pmatrix} 3 \\ 3 \\ 9 \end{pmatrix}$

award 1/2 ×√

3. For eg
$$\begin{pmatrix} 0 \\ 6 \\ 0 \end{pmatrix}$$
 and $\begin{pmatrix} 3 \\ 3 \\ 9 \end{pmatrix}$

award 0/2

Question		Generic scheme	Illustrative scheme	Max mark
6.		Ans: $y = -2x + 4$		3
		Method 1: $y-b=m(x-a)$		
		• 1 find gradient	$ullet^1 - rac{8}{4}$ or equivalent	
		• 2 substitute gradient and a point into $y-b=m(x-a)$	• eg $y - (-2) = -\frac{8}{4}(x-3)$	
		• 3 state equation in simplest form	• $y = -2x + 4$ or equivalent	
		Method 2: $y = mx + c$		
		• 1 find gradient	\bullet^1 $-\frac{8}{4}$	
		• substitute gradient and a point into $y = mx + c$	• 2 eg $-2 = -\frac{8}{4} \times 3 + c$	
		• 3 state equation in simplest form	•3 $y = -2x + 4$ or equivalent	

1. Correct answer without working

award 3/3

2. BEWARE •¹ is not available for
$$\frac{-2-6}{3-(-1)} = \frac{8}{-4}$$
 or $\frac{6-(-2)}{-1-3} = \frac{-8}{4}$

1. For a final answer of
$$y = -\frac{2}{1}x + 4$$

2.
$$y = 2x + 8$$
 $[m = \frac{8}{4} (-1, 6)]$

3.
$$y = 2x - 8$$
 $[m = \frac{8}{4} (3, -2)]$

4.
$$m = \frac{4}{4} = 1 \rightarrow y - 6 = 1(x - (-1)) \rightarrow y = 1x + 7$$

Question		n	Generic scheme	Illustrative scheme	Max mark
7.			Ans: 32 cm ²		2
			•¹ correct substitution into area of triangle formula	$\bullet^1 \frac{1}{2} \times 12 \times 8 \times \frac{2}{3}$	
			•² calculate area	\bullet^2 32 (cm ²)	

1. Correct answer without working

award 1/2

Commonly Observed Responses:

1. For
$$\frac{1}{2} \times 12 \times 8 \times \sin \frac{2}{3} = 32$$

2. For
$$\frac{1}{2} \times 12 \times 8 \times \sin \frac{2}{3}$$

3. For
$$\frac{1}{2} \times 12 \times 8 = 48$$

4. For (a)
$$\frac{1}{2} \times 12 \times 8 \times 0 \cdot \dot{6} = 32$$
 or $\frac{1}{2} \times 12 \times 8 \times 0 \cdot 666... = 32$

(b)
$$\frac{1}{2} \times 12 \times 8 \times 0.67 = 32.16$$
 or $\frac{1}{2} \times 12 \times 8 \times 0.66 = 31.68$

(c)
$$\frac{1}{2} \times 12 \times 8 \times 0.7 = 33.6$$
 or $\frac{1}{2} \times 12 \times 8 \times 0.6 = 28.8$

8.		Ans: <i>x</i> < 5		3
		•¹ expand bracket	• 1 $3x-6$	
		•² collect like terms	\bullet^2 -2x>-10 or 10>2x	
		•³ solve for x	• 3 $x < 5$ or $5 > x$	

Notes:

 Correct answer without valid working Treat guess and check as invalid working award 0/3

1. For
$$19+x>15+3x-6 \rightarrow 2x>-10 \rightarrow x>-5$$

2. For
$$19+x>15+3x-2 \rightarrow -2x>-6 \rightarrow x<3$$

3. For
$$19+x>18(x-2) \rightarrow 19+x>18x-36 \rightarrow 55>17x \rightarrow \frac{55}{17}>x$$

4. For (a)
$$19+x=15+3x-6 \rightarrow -2x=-10 \rightarrow x=5 \rightarrow x<5$$

(b)
$$19 + x = 15 + 3x - 6 \rightarrow -2x = -10 \rightarrow x = 5$$

Question		n	Generic scheme	Illustrative scheme	Max mark
9.			Ans: 26°		3
			Method 1		
			• 1 calculate size of angle OBD	•¹ OBD = 32	
			• ² calculate size of angle ODB (ODB = OBD)	• ² ODB = 32	
			• 3 calculate size of angle CAB	•³ CAB = 26	
			Method 2		
			• 1 calculate size of angle ABC	•¹ ABC = 32	
			• 2 calculate size of angle OCB (OCB = $90 - ABC$)	•² OCB = 58	
			• 3 calculate the size of angle CAB	• 3 CAB = 26	

- 1. Check both methods and award the higher mark.
- 2. Full marks may be awarded for information marked on the diagram.
- 3. Where information is not marked on the diagram then working must clearly attach calculations to **named** angles.
- 4. For an answer of 26° with no relevant working award 0/3
- 5. Where candidate uses triangle ABO, \bullet^3 is available for ABO = 90 and answer to CAB = 90 AOB

eg OBD = 32; AOB = 32; ABO = 90 and CAB = 58

award 2/3 ✓×✓

Qı	Question		Generic scheme	Illustrative scheme	Max mark
10.			Ans: $b = \frac{Fc - t^2}{4}$ or equivalent		3
			• 1 multiply by c • 2 subtract t^{2}	• $Fc = t^2 + 4b$ • $4b = Fc - t^2$	
			•³ divide by 4	$\bullet^3 b = \frac{Fc - t^2}{4}$	

1. Correct answer without working 3/3

1. For
$$b = \frac{c \times f - t^2}{4}$$

2. For
$$b = \frac{t^2 - Fc}{-4}$$

2. For
$$b = \frac{t^2 - Fc}{-4}$$

3. For $b = \frac{Fc}{4} - \frac{t^2}{4}$

Qı	Question		Generic scheme	Illustrative scheme	Max mark
11.			Ans: $\frac{3-2a}{a^2}$		2
			•¹ valid common denominator	\bullet^1 ${a^2}$ or ${a^3}$ or ${a^2 \times a}$	
			•² answer in simplest form	$\bullet^2 \frac{3-2a}{a^2}$	

1. Correct answer without working

award 2/2

2. For subsequent incorrect working, the final mark is not available

eg
$$\frac{3-2a}{a^2} = \frac{3-2}{a} = \frac{1}{a}$$

award 1/2 √x

3. For
$$\frac{3}{a^2} - \frac{2}{a} = \frac{1}{a}$$

award 0/2

Commonly Observed Responses:

1. For
$$\frac{3a-2a^2}{a\times a^2}$$

award 1/2 √×

2. For
$$\frac{3}{a^2} - \frac{2a}{a^2}$$

award 1/2 √x

Que	stion	Generic scheme	Illustrative scheme	Max mark
12.		Ans: $a = 3, b = 2$		4
		Method 1		
		\bullet^1 find \overline{x}	$\bullet^1 \ \overline{x} = 4$	
		• 2 find $(x-\overline{x})^2$	• ² 9, 0, 4, 1, 4	
		• 3 substitute into formula and start to evaluate	$\bullet^3 \sqrt{\frac{18}{4}}$	
		\bullet find values of a and b	• $a = 3, b = 2 \text{ or } \frac{3\sqrt{2}}{2}$	
		Method 2		
		• 1 find $\sum x$ and $\sum x^2$	• 1 $\sum x = 20$ and $\sum x^2 = 98$	
		•² substitute into formula		
		• 3 start to evaluate	\bullet ³ $\sqrt{\frac{18}{4}}$	
		$ullet^4$ find values of a and b	• 4 $a = 3, b = 2 \text{ or } \frac{3\sqrt{2}}{2}$	

1. Correct answer without working

award 0/4

2. For
$$\frac{3\sqrt{2}}{2} \rightarrow a = 3, b = \sqrt{2}$$
 with valid working

award 4/4

3. • 4 is only available for simplifying $\sqrt{\frac{m}{n}}$ where m is **not** a perfect square

Question		n	Generic scheme	Illustrative scheme	Max mark
13.			Ans: (2·5, 5·5)		3
			•¹ evidence of scaling (match x or y coefficients)	• eg $9x - 3y = 6$ x + 3y = 19	
			• follow a valid strategy through to produce values for x and y	\bullet^2 values for x and y	
			•³ state correct x and y coordinates of P	$\bullet^3 x = 2 \cdot 5, y = 5 \cdot 5$	

1. Correct answer without working

award 0/3

2. For a solution obtained by guess and check

award 0/3

Commonly Observed Responses:

1. For x = 2.5, $y = 5.5 \rightarrow (5.5, 2.5)$ with valid working

award 3/3

Question		on	Generic scheme	Illustrative scheme	Max mark
14.	(a)		Ans: $a = 5$		1
			\bullet 1 state value of a	•¹ 5	

- 1. Evidence may appear on the graph
- 2. Accept $...(x+5)^2$
- 3. Where **no answer** appears in (a), check (b) for evidence of a = 5 eg $8 = (-3 + 5)^2 + b$

Commonly Observed Responses:

((b)	Ans: $b = 4$		2
		•¹ substitute (-3, 8) into equation	• 1 $8 = (-3 + 5)^{2} + b$	
		• 2 state value of b	•2 4	

Notes:

1. Correct answer without working

award 2/2

- 1. Evidence may appear on the graph
- 2. An incorrect answer in (a) must be followed through (working must be shown) with the possibility of awarding 2/2.

Commonly Observed Responses:

1. For (a) a=3 and (b) b=8 with or without working

award (a) 0/1 and (b) 0/2

Question		Generic scheme	Illustrative scheme	Max mark
15.		Ans: 6⋅5		3
		Method 1		
		•¹ find scale factor	• $\frac{5}{7}$ or $\frac{7}{5}$	
		•² form equation	$\bullet^2 (x=) \frac{5}{7} (x+2\cdot 6)$	
			or $\frac{7}{5}x = x + 2.6$	
		• 3 find x	•³ 6·5	
		Method 2		
		•¹ form equation	• $\frac{x}{5} = \frac{x+2\cdot6}{7}$ or equivalent	
		•² start to solve	• 2 7 $x = 5(x + 2.6)$ or equivalent	
		\bullet ³ find x	•³ 6·5	
		Method 3		
		•¹ state ratio	• $5:2 \equiv x: 2.6$ stated or implied by	
		•² start to solve	$\bullet^2 \ 2 \cdot 6 \times \frac{5}{2}$	
		\bullet ³ find x	• ³ 6·5	
		Method 4		
		•¹ state ratio	$\bullet^1 \frac{2}{7} PR = 2 \cdot 6$	
		•² start to solve	• 2 PR = $\frac{7}{2} \times 2 \cdot 6$ (= 9 · 1)	
		• 3 find x	$\bullet^3 (9 \cdot 1 - 2 \cdot 6 =) 6 \cdot 5$	

1. Correct answer without working

award 0/3

Commonly Observed Responses:

1.
$$\frac{5}{7} = \frac{x}{2 \cdot 6} \rightarrow x = \frac{13}{7}$$

award 1/3 √××

[END OF MARKING INSTRUCTIONS]

Detailed marking instructions for each question

Question		n	Generic scheme	Illustrative scheme	Max mark
1.			Ans: 23		2
			• ¹ start process	\bullet^1 18 ² + $(-14)^2$ + 3 ²	
			• ² solution	• ² 23	

Notes:

1. Correct answer without working

award 2/2

Commonly Observed Responses:

No working necessary:

1. $\sqrt{529}$

2. $11 \cdot 7... \left(\text{eg } \sqrt{324 - 196 + 9} = \sqrt{137} \right)$ 3. $\sqrt{137}$ 4. $2 \cdot 6... \left(\text{eg } \sqrt{18 - 14 + 3} = \sqrt{7} \right)$

award 1/2 ×✓

award 0/2

4.
$$2 \cdot 6 \dots \left(\text{eg } \sqrt{18 - 14 + 3} = \sqrt{7} \right)$$

award 0/2

Question		n	Generic scheme	Illustrative scheme	Max mark
2.			Ans: £1369		3
			$ullet^1$ know how to increase by 4.5%	●¹ ×1·045	
			• 2 know how to calculate value after three years	•² 1200×1·045³	
			•³ evaluate to nearest £	•³ 1369	

1. Correct answer without working

award 3/3

2. Where an incorrect percentage is used, the working must be followed through to give the possibility of awarding 2/3,

eg for $1200 \times 1.45^3 = 3658$, with working

award 2/3 ×√√

3. Where division is used,

(a) along with $1 \cdot 045$, \bullet^1 is not available eg $1200 \div 1 \cdot 045^3 = 1052$

award 2/3 ×√√

(b) along with an incorrect percentage, \bullet^1 and \bullet^2 are not available eg $1200 \div 0.955^3 = 1378$

award 1/3 ××√

Commonly Observed Responses:

1. No working necessary:

(a) 1369·00 (b) 1370 or 1369·40 or 1369·4 award 3/3

award 2/3 ✓√×

2. Working must be shown:

(e) $1200 \times 0.045 \times 3 = 162$

(a) $1200 \times 0.955^3 = 1045$	
(b) $1200 \times 0.045 = 54 \rightarrow 1200 + 3 \times 54 = 1362$	
(c) $1200 \times 1.045 = 1254$	
(d) $1200 \times 1.045 \times 3 = 3762$	

award 2/3 ×√√

award 1/3 \checkmark xx award 1/3 \checkmark xx

award 1/3 ✓××

award 0/3

Question		on	Generic scheme	Illustrative scheme	Max mark
3.			Ans: 413m		3
			•¹ correct substitution into cosine rule	\bullet ¹ 180 ² + 250 ² - 2×180×250×cos147	
			•² evaluate QR²	•² 170380·3	
			•³ calculate QR	•³ 412·77(m)	

1. Correct answer without working award 0/3

2. Accept 412 metres with working award 3/3

3. Where sine rule is used award 0/3

4. Disregard errors due to premature rounding provided there is evidence

(a) $180^2 + 250^2 - 2 \times 180 \times 250 \times (-0.84) = 170500 \rightarrow 412.9...$ award 3/3

(b) $180^2 + 250^2 - 2 \times 180 \times 250 \times (-0.8) = 166900 \rightarrow 408.5...$ award 3/3

5. (a) 407 or 408 (RAD) award 2/3 ✓×✓

(b) 394 (GRAD) award 2/3 ✓×✓

Inappropriate use of RAD or GRAD should only be penalised once in either Q3, 10 or 15.

Commonly Observed Responses:

Working must be shown:

1.
$$\sqrt{180^2 + 250^2} = 308(.05...)$$
 award $1/3 \times \times \checkmark$

2. (a)
$$180^2 + 250^2 - 2 \times 180 \times 250 \times \cos 147 = 170380 \cdot 0... \rightarrow 410$$
 award 3/3

(b)
$$180^2 + 250^2 - 2 \times 180 \times 250 \times \cos 147 \rightarrow 410$$
 award 2/3 $\checkmark \times \checkmark$

3.
$$32400+62500-75480\cdot35...=19419\cdot64...\rightarrow139(\cdot35...)$$
 award $2/3 \checkmark \times \checkmark$

Question		n	Generic scheme	Illustrative scheme	Max mark
4.			Ans: $x = -3 \cdot 1$, $x = 0 \cdot 6$		3
			• ¹ substitute correctly into quadratic formula	$\bullet^1 \frac{-5 \pm \sqrt{5^2 - 4 \times 2 \times (-4)}}{2 \times 2}$	
			•² evaluate discriminant	• 2 57 (stated or implied by • 3)	
			• 3 calculate both values of <i>x</i> correct to one decimal place	•³ -3·1, 0·6	

1. Correct answer without working

award 0/3

- 2. The final mark is only available if $b^2 4ac > 0$; see CORs 2 5
- 3. The final mark is only available when answer requires rounding

Commonly Observed Responses:

1. 57
$$(b^2 - 4ac)$$

award 1/3 ×√x

2.
$$\frac{-5 \pm \sqrt{5^2 - 4 \times 2 \times (-4)}}{2 \times 2} \rightarrow \frac{-5 \pm \sqrt{-7}}{2 \times 2} \rightarrow -1.9, -0.6$$

award 1/3 √××

(Beware: candidate may get $\sqrt{-7}$ then change it to $\sqrt{7}$)

3.
$$\frac{-5 \pm \sqrt{5^2 - 4 \times 2 \times (-4)}}{2 \times 2} \rightarrow \frac{-5 \pm \sqrt{7}}{2 \times 2} \rightarrow -1.9, -0.6$$

award 2/3 √×√

4.
$$\frac{-5 \pm \sqrt{5^2 - 4 \times 2 \times 4}}{2 \times 2} \rightarrow \frac{-5 \pm \sqrt{-7}}{2 \times 2} \rightarrow -1.9, -0.6$$

award 1/3 ×√×

(Beware: candidate may get $\sqrt{-7}$ then change it to $\sqrt{7}$)

5.
$$\frac{-5 \pm \sqrt{5^2 - 4 \times 2 \times 4}}{2 \times 2} \rightarrow \frac{-5 \pm \sqrt{7}}{2 \times 2} \rightarrow -1.9, -0.6$$

award 1/3 ××✓

Question		n	Generic scheme	Illustrative scheme	Max mark
5.			Ans: 4200		3
			•¹ know that 115% = 4830	•¹ 115% = 4830	
			•² begin valid strategy	$\bullet^2 1\% = \frac{4830}{115} \text{ or equivalent}$	
			• 3 complete calculation within valid strategy	•³ 4200	

1. For 4200 with or without working

award 3/3

2. For 4105 or 4106 (85% of 4830) or 5554 or 5555 (115% of 4830)

(i) and evidence of •1

award 1/3 √××

(ii) otherwise

award 0/3

Commonly Observed Responses:

1.
$$\frac{4830}{1.15}$$
 = 4200

award 3/3

2.
$$85\% = 4830 \rightarrow 5682$$

award 2/3 ×√✓

3.
$$15\% = 4830 \rightarrow 32200$$

award 2/3 ×√✓

Question		n	Generic scheme	Illustrative scheme	Max mark
6.			Ans: 4180mm ³		5
			• ¹ know to find difference of two volumes	•¹ evidence of difference in two volumes	
			•² substitute correctly into formula for volume of large sphere	• $\frac{4}{3} \times \pi \times 12^{3} (= 7238 \cdot 229)$	
			• 3 substitute correctly into formula for volume of small sphere	$\bullet^3 \frac{4}{3} \times \pi \times 9^3 (= 3053 \cdot 628)$	
			 4 carry out all calculations correctly (must involve difference or sum of two volume calculations and include a fraction) 	•4 4184.601	
			• 5 round final answer to 3 significant figures and correct units	• ⁵ 4180mm ³	

1. Correct answer without working

award 0/5

2. Accept variations in π

eg
$$\frac{4}{3} \times 3 \cdot 14 \times 12^3 - \frac{4}{3} \times 3 \cdot 14 \times 9^3 = 4182 \cdot 48 = 4180 \text{ mm}^3$$

3. In awarding •5

(a) Intermediate calculations need not be shown

eg
$$\frac{4}{3} \times \pi \times 12^3 - \frac{4}{3} \times \pi \times 9^3 = 4180 \,\text{mm}^3$$

award 5/5

(b) Where intermediate calculations are shown, they must involve at least four significant figures

eg
$$7238 \cdot 229 \dots -3053 \cdot 628 \dots = 7240 - 3050 = 4190 \text{mm}^3$$

award 4/5 ✓√✓✓×

4. Volume of second sphere may be calculated using volume scale factor

eg accept
$$\left(\frac{3}{4}\right)^3 \times \frac{4}{3} \times \pi \times 12^3$$
 for the award of •3

Question	Generic scheme	Illustrative	e scheme	Max mark				
Commonly Ob	Commonly Observed Responses:							
Working must	be shown:							
1. (a) $\frac{4}{3} \times \pi \times 12$	$2^3 - \frac{4}{3} \times \pi \times 10 \cdot 5^3 = (7238 \cdot \dots - 4849 \cdot \dots)$	= 2390mm ³	award 4/5 ✓ v	/×√√				
(b) $\frac{4}{3} \times \pi \times 1$	$2^3 - \frac{4}{3} \times \pi \times 10 \cdot 5^3 = 7240 - 4850 = 2390$	mm ³	award 3/5 ✓ v	∕x√x				
2. $\frac{4}{3} \times \pi \times 12^3 -$	$\frac{4}{3} \times \pi \times 3^3 = 7130 \text{mm}^3$		award 4/5 ✓ v	/x√√				
3. $\frac{4}{3} \times \pi \times 12^3 =$	= 7240mm ³		award 2/5 ×	∕xx√				
4. $\frac{4}{3} \times \pi \times 12^3 +$	$\frac{4}{3} \times \pi \times 9^3 = 10300 \text{mm}^3$		award 4/5 ×	/ / / /				
5. $\frac{4}{3} \times \pi \times 24^3 -$	$-\frac{4}{3} \times \pi \times 18^3 = 33500 \text{mm}^3$		award 4/5 ✓	(/ / /				
6. $\frac{4}{3} \times \pi \times 24^3$	$-\frac{4}{3} \times \pi \times 21^3 = 19100 \text{mm}^3$		award 3/5 ✓	cx√√				
7. $\frac{4}{3} \times \pi \times 1.5^3 =$	= 14 · 1mm ³		award 1/5 ××	xx√				
8. $\frac{4}{3} \times \pi \times 12^2 -$	$\frac{4}{3} \times \pi \times 9^2 = 264 \text{mm}^3$		award 4/5 ✓	(/ / /				
9. $\frac{4}{3} \times \pi \times 12^3 -$	$\frac{4}{3} \times \pi \times 9^3 = 1332\pi \text{mm}^3$		award 4/5 ✓ v	/√√x				

Question	n Generic scheme	Illustrative scheme	Max mark
7.	Ans: No, with valid reason		3
	Method 1		
	•¹ valid strategy (Converse of Pythagoras' Theorem in correct triangle with correct combination of sides)	\bullet^1 8 ² +19 ² and 22 ²	
	•² evaluation	$\bullet^2 \ 8^2 + 19^2 = 425, 22^2 = 484$	
	•³ comparison and state conclusion	$\bullet^3 8^2 + 19^2 \neq 22^2$; No	
	Method 2		
	•¹ valid strategy (Pythagoras' Theorem in correct triangle with correct combination of sides)	•¹ 8² +19²	
	•² evaluation	• length of longest side = 20.6	
	•³ comparison and state conclusion	• 3 20 · 6 \neq 22; No	
	Method 3		
	•¹ valid strategy (correct substitution into cosine rule to find largest angle in correct triangle)	$\bullet^1 \cos x^0 = \frac{8^2 + 19^2 - 22^2}{2 \times 8 \times 19}$	
	•² evaluation	$\bullet^2 \cos x^\circ = -0.194$	
	\bullet ³ find angle and state conclusion	$\bullet^3 (x=) 101.2$; No	
	Method 4		
	•¹ valid strategy (correct substitutions into cosine rule to	$\bullet^1 \cos x^\circ = \frac{8^2 + 7^2 - 6^2}{2 \times 8 \times 7}$	
	find angle opposite 6 in triangle A and angle opposite 16 in triangle B)	and $\cos y^{\circ} = \frac{7^2 + 19^2 - 16^2}{2 \times 7 \times 19}$	
	•² evaluation of both cos values	$e^2 \cos x^\circ = 0.6875 \text{ and } \cos y^\circ = 0.5789$	
	• ³ find sum of angles and state conclusion	•³ (sum=)101·2; No	

Question		Generic scheme	Illustrative schem	ustrative scheme			
No	tes:						
1.	In Meth	nod 1 •³ is not available when evaluatio out	ns at •² have not been				
	eg 8 ² +	$19^2 = 64 + 361$, $22^2 = 484$; $8^2 + 19^2 \neq 2$	22 ² ; No	award 1/3	√xx		
		$^{2} = 64 + 361 = 425, 22^{2} = 484; 8^{2} + 19^{2} \neq $,	award 3/3	}		
2.		the wrong triangle is chosen, •² is only attion of Pythagoras or cosine rule; see C					
Co	mmonly (Observed Responses:					
1.	8 ² +19 ² =	$= 64 + 361 = 425,22^2 = 484$; $8^2 + 19^2 < 22^2$; No	award 3/3	;		
2.	7 ² +16 ² =	= $305,19^2 = 361;7^2 + 16^2 \neq 19^2$; No		award 2/3	x√√		
3.	7 ² +19 ² =	= $410,16^2 = 256$; $7^2 + 19^2 \neq 16^2$; No		award 1/3	xx√		
4.	4. $8^2 + 22^2 = 548,19^2 = 361; 8^2 + 22^2 \neq 19^2$; No award 2/3 ×						
5.	equ (b) 8 ² +	$19^2 = 425,22^2 = 484$; The square of the all to the sum of the squares of the other $19^2 = 425,22^2 = 484$; The hypotenuse is	r two sides; No s not equal to the	award 3/3			
	` ,	of the squares of the other two sides; I	•	awar	d 2/3		

Question		on	Generic scheme	Illustrative scheme	Max mark
8.	(a)		Ans: d-c		1
			•¹ answer	$ullet^1$ d - c or equivalent	

- 1. Accept -c+d or d+-c
- 2. Accept **D-C** as bad form

Commonly Observed Responses:

(b)	Ans: $\frac{3}{2} \mathbf{d} - \frac{1}{2} \mathbf{c}$		2
	•¹ valid pathway	• 1 $\overrightarrow{\mathbf{TP}} + \frac{1}{2}\overrightarrow{\mathbf{PR}}$ or $\overrightarrow{\mathbf{TQ}} + \overrightarrow{\mathbf{QR}} + \frac{1}{2}\overrightarrow{\mathbf{RP}}$	
	• ² correct simplified expression	• $\frac{3}{2}d - \frac{1}{2}c$ or equivalent	

Notes:

1. Correct answer without working

award 2/2

2. Accept
$$\frac{3}{2}\mathbf{D} - \frac{1}{2}\mathbf{C}$$

- 3. $\overrightarrow{TP} + \overrightarrow{PV}$ or $\overrightarrow{TQ} + \overrightarrow{QR} + \overrightarrow{RV}$ alone is not enough for the award of \bullet^1
- 4. For the award of ●¹
 - (a) accept $\mathbf{d} + \frac{1}{2}\overrightarrow{\mathbf{P}\mathbf{R}}$ but **not** $\mathbf{d} + \overrightarrow{\mathbf{P}\mathbf{V}}$
 - (b) accept $2\mathbf{d} \mathbf{c} + \frac{1}{2}\overrightarrow{\mathbf{RP}}$ but not $2\mathbf{d} \mathbf{c} + \overrightarrow{\mathbf{RV}}$
 - (c) accept $\overrightarrow{PV} = \frac{1}{2}(\mathbf{d} \mathbf{c})$ but not $\frac{1}{2}(\mathbf{d} \mathbf{c})$ alone
 - (d) accept $\overrightarrow{RV} = \frac{1}{2}(\mathbf{c} \mathbf{d})$ but not $\frac{1}{2}(\mathbf{c} \mathbf{d})$ alone

Commonly Observed Responses:

1.
$$\frac{1}{2}(3\mathbf{d} - \mathbf{c})$$

award 2/2

Question		on	Generic scheme	Illustrative scheme	Max mark
9.	(a)		Ans: $(2x-5)(2x+5)$		1
			•¹ factorise	$\bullet^1 (2x-5)(2x+5)$	

Commonly Observed Responses:

(b)	Ans: $\frac{2x+5}{x+2}$		3
	• 1 start to factorise	$ullet^{-1}(2x \ 5)(x \ 2)$	
	• ² complete factorising	$\bullet^2 (2x-5)(x+2)$	
	• ³ simplify	$\bullet^3 \frac{2x+5}{x+2}$	

Notes:

1. Correct answer without working

award 3/3

2. For $(2x \ 10)(x \ 1)$ or $(2x \ 2)(x \ 5)$ etc

award 1/3 √××

3. For subsequent incorrect working, the final mark is not available

$$eg \frac{2x+5}{x+2} = \frac{7}{3}$$

award 2/3 ✓✓×

4. \bullet^3 is only available when both the numerator and denominator have at least two factors

Questi	on	Generic scheme	Illustrative scheme	Max mark
10.		Ans: 9.9 kilometres		4
		• ¹ calculate size of angles DEF and DFE	• ¹ 40 and 104	
		•² correct substitution into sine rule	$\bullet^2 \frac{DF}{\sin 40} = \frac{15}{\sin 104}$	
		• ³ rearrange formula	$\bullet^3 \frac{15 \times \sin 40}{\sin 104}$	
		● ⁴ calculate DF	• ⁴ 9·9(36)	

1. Correct answer without working

award 0/4

2. Accept a final answer of 10, with working

award 4/4

- 3. 1 may be awarded for sizes of angles DEF and DFE marked on the diagram
- 4. Where incorrect sizes are used for angles DEF and DFE
 - (a) with prior evidence of angle sizes (marked on diagram or clearly attached to **named** angles), marks \bullet^2 , \bullet^3 and \bullet^4 are available
 - (b) without prior evidence of angle sizes, only marks \bullet^3 and \bullet^4 are available
- 5. **BEWARE** $\frac{DF}{\sin 40} = \frac{15}{\sin 76} \rightarrow 9.9$
 - (a) with prior evidence of DEF = 40 and DFE = 76

award 3/4 x√√√

(b) without prior evidence of sizes of angles DEF and DFE

award 2/4 ××√√

- 6. Disregard errors due to premature rounding provided there is evidence
- 7. Inappropriate use of RAD or GRAD should only be penalised once in either Q3, 10 or 15
 - (a) -34.7... (RAD)
 - (b) 8.8... (GRAD)

Commonly Observed Responses:

1.
$$\frac{DF}{\sin 36} = \frac{15}{\sin 90} \rightarrow 8.8$$

(a) with prior evidence of sizes of angles DEF and DFE marks

award 3/4 × ✓ ✓

(b) without prior evidence of sizes of angles DEF and DFE

award 2/4 ××√√

2.
$$\frac{DF}{\sin 230} = \frac{15}{\sin 126} \rightarrow -14.2$$

award 2/4 ××√√

3.
$$\frac{DF}{40} = \frac{15}{104} \rightarrow 5.769...$$

award 1/4 √×××

Qı	Question		Generic scheme	Illustrative scheme	Max mark
11.			Ans: $\frac{3}{5}$ or 0.6		2
			• ¹ isolate term in <i>y</i> or divide throughout by 5	• 1 $-5y = -3x$ or $3x$ = $5y$ or or $\frac{3x}{5} - \frac{5y}{5} - \frac{10}{5} = 0$	
			• ² state gradient explicitly	$\bullet^2 \frac{3}{5}$ or 0.6	

1. Correct answer without working

award 2/2

- 2. Do not accept $x = \frac{3}{5}$ or $y = \frac{3}{5}$ for the award of \bullet^2
- 3. Where gradient formula is used with two points which
 - (a) lie on the line 3x-5y+10=0,
 - award •¹ for correct substitution into gradient formula
 - award •2 for correct calculation of gradient
 - (b) do not lie on the line $3x-5y+10=\overline{0}$, award 0/2

Commonly Observed Responses:

1.
$$\frac{3}{5}x$$
 or $0.6x$ (with working)

award 1/2 √x

Qı	Question		Generic scheme	Illustrative scheme	Max mark
12.			Ans: $x^{-\frac{1}{3}}$		2
			•1 apply $\sqrt[n]{x^m} = x^{\frac{m}{n}}$	• $\frac{1}{x^{\frac{1}{3}}}$ stated or implied by • 2	
			• apply $\frac{1}{x^n} = x^{-n}$	$e^2 x^{-\frac{1}{3}}$	

1. Correct answer without working award 2/2

2. Accept $x^{\frac{1}{3}}$ for \bullet^1 3. Where a number or letter (excluding n) other than x is used

eg
$$a^{-\frac{1}{3}}$$
 or $8^{-\frac{1}{3}}$ award 1/2
$$n^{-\frac{1}{3}}$$
 award 0/2

1.
$$n = -\frac{1}{3}$$
 award 2/2

2.
$$-x^{\frac{1}{3}}$$
 award 1/2 \checkmark × 3. x^{-3} award 1/2 \times

Qı	uestion	Generic scheme	Illustrative scheme	Max mark
13.		Ans: 42 · 4 centimetres		4
		• 1 marshal facts and recognise right-angled triangle	•1 12	
		•² consistent Pythagoras statement	$x^2 = 14^2 - 12^2$	
		• 3 calculation of x	•3 7.2	
		• ⁴ find height of the logo	•4 42 · 4	

1. Correct answer without working award 0/4

- 2. The final mark is for doubling the result of a Pythagoras (or trig.) calculation and then adding 28
- In the absence of a diagram accept $x^2 = 14^2 12^2$ as evidence for the award of \bullet^1 and \bullet^2 3.

4. **BEWARE**

Where a diagram is shown, working must be consistent with the diagram.

- 2 is not available for an incorrect diagram leading to $x^2 = 14^2 12^2$
- 5. Disregard errors due to premature rounding provided there is evidence

Commonly Observed Responses:

1. For
$$x^2 = 14^2 + 12^2 \rightarrow x = 18.4$$
 height = $64.8...$ or 64.9

- working inconsistent with correct diagram
- working consistent with candidate's diagram
- (cosine rule may be used to calculate x)
- (c)

award
$$3/4 \checkmark x \checkmark \checkmark$$

- award 3/4 × ✓ ✓
- no diagram award 2/4 ××√√

2. For
$$x^2 = 24^2 - 14^2 \rightarrow x = 19 \cdot 4...$$
 height = 66 \cdot 9... or 67

- working consistent with candidate's diagram
- no diagram or working not consistent with candidate's (b) diagram

3. For
$$x^2 = 24^2 + 14^2 \rightarrow x = 27.8...$$
 height = 83.5... or 83.6

- working consistent with candidate's diagram (cosine rule may be used to calculate x)
- no diagram or working not consistent with candidate's (b) diagram
- award 2/4 ××√√

award 3/4 × ✓ ✓

Qu	Question		Generic scheme	Illustrative scheme	Max mark
14.			Ans: 282°		3
			Method 1		
			•¹ expression for arc length	• $\frac{\text{angle}}{360} \times \pi \times 12.8$	
			•² know how to find angle	$\bullet^2 \frac{31.5\times360}{\pi\times12.8}$	
			•³ calculate angle	•³ 282(·)	
			Method 2		
			•¹ arc length: circumference ratio	$\bullet^1 \frac{31.5}{\pi \times 12.8} (=0.78)$	
			•² know how to find angle	$\bullet^2 \frac{31.5 \times 360}{\pi \times 12.8}$	
			•³ calculate angle	•³ 282(·)	

1. Correct answer without working

award 0/3

2. Accept variations in π

3. Premature rounding of $\frac{31.5}{\pi \times 12.8}$ must be to at least 2 decimal places

4. For the award of \bullet^3 , the calculation must involve a division by a product. The calculation must include 31.5, π , 360 and the candidate's chosen diameter or radius

5. For subsequent incorrect working, the final mark is not available eg 360-282=78

award 2/3 ✓✓×

Commonly Observed Responses:

1. For
$$\frac{31.5 \times 360}{\pi \times 6.4} = 564$$

award 2/3

×√√

2. For
$$\frac{31.5 \times 360}{\pi \times 6.4^2} = 88.1...$$

award 2/3 ×√√

3. For
$$\frac{31.5}{360} \times \pi \times 12.8 = 3.518...$$

award 0/3

Question		on	Generic scheme	Illustrative scheme	Max m ark
15.	(a)		Ans: 51.5 metres		1
			•¹ calculate height	● ¹ 51·5	

- 1. Inappropriate use of RAD or GRAD should only be penalised once in either Q3, 10 or 15
 - (a) 18·1... (RAD)
 - (b) 53·5... (GRAD)

Commonly Observed Responses:

1. 51.5,308.5

award 0/1

(b)	Ans: 17 metres		1
	•¹ calculate minimum height	•¹ 17	

Notes:

- 1. Inappropriate use of RAD or GRAD should only be penalised once in either Q3, 10 or 15
 - (a) $26 \cdot 2...$ (RAD)
 - (b) 18·1... (GRAD)

(c)	Ans: 24·1° and 335·9°		4
	•¹ substitute 61 correctly into equation	• 1 61 = 40 + 23 cos x	
	• 2 calculate $\cos x$	$\bullet^2 \cos x = \frac{21}{23}$	
	\bullet calculate value of x	•³ 24(·07)	
	• 4 calculate 2^{nd} value of x	• ⁴ 335(·92)	

Question	Generic scheme	Illustrative scheme	Max m ark
----------	----------------	---------------------	--------------

- 1. Correct answers
 - (a) without working
 - (b) by repeated substitution

award 1/4 *******✓ award 1/4 *******✓

- 2. Accept 24 and 336 with valid working
- 3. Disregard errors due to premature rounding provided there is evidence
- 4. Do not penalise omission of degree sign throughout the question
- 5. Inappropriate use of RAD or GRAD should only be penalised once in either Q3, 10 or 15
 - (a) 0.418...,359.5... (RAD)
 - (b) $26 \cdot 7...$, $333 \cdot 3...$ (GRAD)

Commonly Observed Responses:

1.
$$61 = 40 + 23\cos x \rightarrow 61 = 63\cos x \rightarrow \cos x = \frac{61}{63} \rightarrow x = 14.5, 345.5$$
 award 3/4 $\checkmark \times \checkmark \checkmark$

2.
$$\cos x = \frac{-2}{60} \rightarrow x = 91.9$$
, 268.1 award 2/4 ***/

[END OF MARKING INSTRUCTIONS]